The QDECR package A flexible, extensible vertex-wise analysis framework in R

Sander Lamballais¹, Henning Tiemeier², Meike W. Vernooij¹, M. Arfan Ikram¹, Ryan L. Muetzel¹ ¹Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands ²Harvard University, Boston, MA, USA

Erasmus MC

Universitair Medisch Centrum Rotterdam

Introduction

• The cerebral cortex is integral to brain function and dysfunction.

Running QDECR

A full tutorial on how to run QDECR can be found

- Differences in cortical properties such as cortical thickness can be studied with surface-based vertex-wise analyses.
- Existing surface-based analysis tools were build for that specific purpose and tend to lack procedures/features commonly used in social and medical sciences such as handling of imputed data and assessing bias.
- We developed QDECR, an extensible package in R, a programming language for statistics. Currently, QDECR can perform linear regression.

at: https://www.qdecr.com

The following code performs an analysis on how cortical thickness is influenced by sex and age:

library (QDECR)

vw <- qdecr_fastlm(qdecr_thickness ~ sex + age,</pre> data = pheno, id = "id",

hemi = "lh", project = "test")

summary(vw)

Summarize: Get information on data provenance, number of clusters, cluster-specific

Formulas

QDECR uses R formula objects and can thus handle:

• Polynomials:	qdecr_thickness ~ age + age^2
• Splines:	qdecr_thickness ~ ns(age, 3)
• Interactions:	qdecr_thickness ~ sex * age
• No intercept:	qdecr_thickness ~ age – 1

It can also handle "as-is" treatment, which allows for modification of variables inside the formula, for example:

- qdecr_thickness ~ I(scale(age)) • Standardizing:
- Computations: qdecr_thickness ~ I(weight / height^2)
- qdecr_thickness ~ I(cut(age, 3)) • Any function:

Data handling

QDECR has been designed with common practices related to data handling in mind:

- Imputed data: Missingness of data can be handled with multiple imputation. QDECR automatically recognizes most imputed data formats (like `mids` objects from `mice`).
- Parallel processing: R is single-threaded, but several packages exist to use multiple cores. QDECR utilizes those packages to speed up performance.
- **Big data**: QDECR uses file-backed matrices to handle big datasets (shared memory required). We use QDECR in-house to run analyses on datasets with thousands of individuals and hundreds of imputed datasets.

Adding features

QDECR is modular and acts as a framework for developers to implement new types of vertex-wise analyses.

By default, QDECR checks the input, provides tools to load the vertex-wise data, apply functions per vertex, provides tools to do multiple-testing correction, etc.

To add new methods, two functions need to be written:

- 1. **Prep function**: A function that takes the input and does most preparations that can happen before going vertexwise.
- 2. Analysis function: A function that takes the output of the prep function and runs one analysis per vertex.

Further details

- For cluster-wise corrections QDECR currently relies on Monte-**Carlo simulations as provided in the Freesurfer distribution.**
- Any vertex-wise measure can be used: cortical thickness, cortical surface area, cortical volume, etc.
- Previous QDECR analyses can be reloaded with qdecr_load().
- Go to www.qdecr.com for more information.
- Visit the QDECR software demo at OHBM, 12 June 2019 (#4860)

